
1

BR 1/02 1

VHDL Packages: standard

• The standard package defines all of the types and associated 
operator functions for the ‘predefined’ types
– Chapter 14 of the IEEE LRM (language reference manual) has a listing 

of these types
– Examples of predefined types are BOOLEAN, BIT, CHARACTER, 

REAL, INTEGER, TIME, etc.

• In Digital Systems, you used the types defined in the IEEE 1164 
standard logic package (std_logic, std_logic_vector, etc)
– VHDL allows users to define their own types, and the std_logic types are 

better suited for digital logic simulation than the predefined types found 
in the standard package

BR 1/02 2

Enumerated Types

An enumerated type is one in which the type definition includes 
all of the allowed literals for that type

type BOOLEAN is (FALSE, TRUE);

Boolean types can only take on these two literal values.

The IEEE LRM lists the functions defined for this types: 
and, or, nand, xor, etc….. See the LRM for a complete list.

type BIT is (‘0’, ‘1’);

Type bit was initially provided to perform digital logic 
simulation but it has been replaced by the ‘std_logic’ type 
(more on this later).

BR 1/02 3

Range Types

Types INTEGER and REAL are range types in which the 
types take on all values within a range:

type INTEGER is range -2147483648 to 2147483647;
type REAL is range -1.7e38 to 1.7e38;

The actual range is implementation dependent – all VHDL 
simulators are supposed to support at least a 32-bit range for 
integers and single precision (32-bit) IEEE floating point range.

BR 1/02 4

Predefined Type time
type TIME is range implementation_defined

units
fs;                 -- femtosecond
ps  = 1000 fs;      -- picosecond
ns  = 1000 ps;      -- nanosecond
us  = 1000 ns;      -- microsecond
ms  = 1000 us;      -- millisecond
sec = 1000 ms;      -- second
min = 60 sec;       -- minute
hr = 60 min;        -- hour

end units;

Units can also be defined for types – each unit is defined in 
terms of another unit. 

BR 1/02 5

Initial Values of Variables, Signals

Unless overridden in the signal or variable declaration, the initial 
value is the ‘leftmost’ value of the type 

signal  a_boolean: boolean;
signal  a_integer: integer;
signal  a_float: float;
signal  a_bit : bit; 

signal another_integer: integer := 0;   

Initial value = FALSE
Initial value = -2147483648 

Initial value = -1.7e38 

Initial value = 0

Initial value = ‘0’ 

BR 1/02 6

Subtypes

A subtype defines a new type that has a restricted set of 
literals or values from its associated type.

subtype NATURAL is INTEGER range 0 to INTEGER'HIGH;
subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;

INTEGER'HIGH specifies the maximum-valued integer.



2

BR 1/02 7

Mixing Types
VHDL is a strongly typed language.  This means that all 
variables/signals must have declared types (there are no default
assumptions) and that you cannot mix types in an expression 
except for subtypes of the same type.

signal  a : std_logic := ‘0’;
signal  b,c : bit :=  ‘0’;

c <=  a  AND  b;

Compilation error generated - signals ‘a’ and ‘b’ are different 
types.  Error message will be: 

No feasible entries for infix op: "and" 
Type error resolving infix expression.

BR 1/02 8

Type Conversion Functions
For most cases, need type conversion functions to convert from one 
type to another. These functions are usually defined in the same
package that defines the type.  You can also write additional 
functions yourself. 

signal  a : std_logic := ‘0’;
signal  b,c : bit :=  ‘0’;

c <=  TO_BIT(a)  AND  b;

TO_BIT is a type conversion function provided in the IEEE 1164 
package that converts a std_logic type to a bit type.

We will talk more about explicit type conversions later.

BR 1/02 9

Number Conversions

For integers and reals, can use explicit conversions:
signal a: integer;
signal b: real;

-- converts real to integer
-- rounding rules implementation dependent
a < = integer(b);

-- converts integer to real
b <= real(a); 

Explicit conversions allowed between closely related types (see 
LRM for this definition, in practice mainly used for integer/real 
conversion).

BR 1/02 10

Time Conversions

Time to Natural:

Natural_var := Time_var / 1 ns;

Natural to Time:

Time_var :=  Natural_var * 1 ns

BR 1/02 11

Vectors

A vector type is a linear array where the elements are the same 
type.

type BIT_VECTOR is array (NATURAL range <>) of BIT;

variable  a_vec : bit_vector(0 to 7);
variable  b_vec : bit _vector(7 downto 0);

Note that in the type declaration of type BIT_VECTOR the 
array range was unconstrained (‘range <>’).

When we declare a variable or signal of that type, must specify 
the range. 

BR 1/02 12

Multi-Dimensional Vectors

To declare a multi-dimensional vector, can do the following:

type bytes is array (NATURAL range <> ) of 
bit_vector(7 downto 0);

variable  some_memory : bytes(0 to 1023);

Only one dimension of multi-dimensional vector type can be 
unconstrained, the other dimensions must be fixed sizes. 

It would be a syntax error to declare:
type array_2d is array (NATURAL range <>  ) of 

array (natural range <> ) of BIT;



3

BR 1/02 13

Type  STRING

type STRING is array (POSITIVE range <> ) of CHARACTER;

variable  a_memory : string(1 to 5) := “Hello”;

Note that since the range on STRING is of type POSITIVE, 
then first array index of string will be 1, not 0.

The following will generate a syntax error because ‘0’ is not 
of type POSITIVE:

variable  a_memory : string(0 to 4) := “Hello”;

BR 1/02 14

Assertion Statements
The SEVERITY_LEVEL type in the standard package is used 
with assertion statements.

type SEVERITY_LEVEL is (NOTE, WARNING,ERROR, FAILURE);

An assertion statement is a concurrent statement and can 
appear outside or inside of a process.  Assertion statements 
check a condition, and print a message to the console if the 
condition is false:
ASSERT  condition

REPORT  some_string
SEVERITY  some_severity_level;

An example:
ASSERT  (expected_var = actual_var)

REPORT  “Incorrect result found!”
SEVERITY  ERROR;

In Modelsim, can mask/unmask assertions of a particular severity.

BR 1/02 15

VHDL Packages: textio
Assertion statements are the only method available in the 
standard package for printing strings to the screen.

Package textio provides functions for reading VHDL types from 
either standard input or a text file, and functions for writing 
VHDL types as text to a standard output or a text file.

Unfortunately, the capability is textio is primitive compared to 
IO functions in other languages. We will not do much with text 
input/output in this class.

To use the functions in this package, the following must be 
included in the VHDL file:

LIBRARY std;
use std.textio.all;

BR 1/02 16

Types defined in textio

-- A LINE is a pointer to a String value 
type LINE is access string; 
-- file of variable length ASCII records
type TEXT is file of string; 

type SIDE is (right, left);  -- for justifying output data 
subtype WIDTH is natural; -- used for widths of output fields

-- standard input (the keyboard usually)
file input : TEXT open read_mode is "STD_INPUT";

-- standard output (the console usually)
file output : TEXT open write_mode is "STD_OUTPUT";

BR 1/02 17

Access Types

An access type is the method by which you declare a pointer 
to a type.

type LINE is access string;

variable ll: line;

ll = new String’(“a new string”);
deallocate(ll);

new used for dynamic 
allocation, returns a pointer 

deallocate used to free memory associated 
with an dynamically allocated object 

BR 1/02 18

readline, file_open Procedures

The readline procedure reads a line of text from a file into a 
line variable.  

procedure READLINE (file F: TEXT; L: out LINE);

variable ll: line;

readline(input, ll);

Read a line of text from file 
‘input’ which is standard 
input, value returns in ll .

To read from a file other than standard input, use ‘file_open’.

file  inputfile: text;
process

variable ll:string;
begin

file_open(inputfile, string’(“file.txt”), READ_MODE); 
readline(inputfile, ll);

File object

filename

Open for reading



4

BR 1/02 19

read Procedures
The various read procedures reads a VHDL object from a line 
variable. Each successful read modifies the line variable by 
removing characters, so successive reads to the same line variable 
resumes where the last left off.

file  inputfile: text;
process

variable ll:line; variable a_time: time;
variable a_int:integer; variable a_real:real;
begin

file_open(inputfile, string’(“file.txt”), READ_MODE); 
readline(inputfile, ll);
read (ll, a_int);
read (ll, a_real);
read (ll, a_time);

Assume the first line of ‘file.txt’ contains the line: 
56  4.7   20 ns This has an integer, real,  and time  type

Each read picks up where 
the last read left off.

BR 1/02 20

Detecting formatting errors

Another version of the read procedure is provided for detecting 
formatting errors:
procedure 

READ(L:inout LINE; VALUE:out sometype; GOOD:out Boolean); 

The variable GOOD will return FALSE if the expected type was 
not found on the line. Variable L is not modified if the read fails.

variable ok:boolean;
begin 

file_open(inputfile, string’(“file.txt”), READ_MODE); 
readline(inputfile, ll);
read (ll,a_time, ok);
assert ok

report “time type not found!!”
severity error;   

The first object on the line 
is an integer and does not 
have a time unit (I.e. 
‘ns’), so this will fail.

BR 1/02 21

End of File,  Line length

The code below uses the endfile function to detect end of file.
The ‘length attribute can be used to detect if a line has no 
characters in it.

while (not endfile(stimulusfile)) loop
deallocate(ll);
readline(stimulusfile, ll);
if (ll'length = 0) then -- for blank lines

next;
end if;
--- perform processing on this line
---

end loop;

free space from 
previous line. Does 
not matter if ll is 
initially empty.

Blank line check

endfile returns a boolean – will be TRUE if end of file 
has been reached.

BR 1/02 22

Opening Files
Must be careful to open a file only once.  If the process has no
sensitivity list and the process ends with a no-argument wait
statement, it is easy – just open it at the start of the process:

process
begin
file_open(inputfile, string’(“file.txt”), READ_MODE);
--- other stuff
wait;

end process;

A process with a sensitivity list will be triggered multiple times. 
Use a boolean variable to ensure file_open executed only once:

process (some_signal, another_signal)
variable init:boolean;
begin

if (not init) then
file_open(inputfile, string’(“file.txt”), READ_MODE);
init := TRUE;

end if;
--- other stuff
end process;

BR 1/02 23

Procedure/Function Overloading

The LRM shows multiple read procedures – they are all called 
read with the only difference being the type and number of 
arguments.

Which read procedure is selected by the compiler is determined by 
the type and number of arguments passed to it.  This is called 
operator overloading (also used in C++). 

When a new type is defined,  a new read procedure must be written 
for that type if ASCII string conversion for the type is desired. 
Typically, this read procedure is defined in the package that defines 
that type. 

BR 1/02 24

More on file_open
Chapter 3 of the LRM discusses file operations in detail.

procedure FILE_OPEN (file F: FT; 
fname: in STRING, 
open_type: in FILE_OPEN_KIND := READ_MODE);

Default is to open for 
reading

procedure FILE_OPEN (status: out FILE_OPEN_STATUS;
file F: FT; 
fname: in STRING, 
open_type: in FILE_OPEN_KIND := READ_MODE);

Use this version to check for errors on open. Status will be 
either open_ok, status_error, name_error, or mode_error.

FILE_OPEN_KIND can be either read_mode, write_mode or 
append_mode.



5

BR 1/02 25

write, writeline Procedures
Use the write procedure to write the ASCII representation of a 
VHDL type to a line variable.  Use the writeline procedure to write a 
line variable to a file.

file  outputfile: text;
process

variable ll:line; 
variable a_time: time := 10 ns;
variable a_int:integer := 53; 
variable a_real:real := 34.7;
begin

file_open(outputfile, string’(“file.txt”), WRITE_MODE); 
write (ll, a_int); write (ll, string’(“ “));
write (ll, a_real); write (ll, string’(“ “)); 
write (ll, a_time, RIGHT, 19, NS);
write (ll, string’(LF));
writeline (outputfile, ll);
--- other operations..

Newline character

Justification, field width, 
time units

Add whitespace
between values

BR 1/02 26

More on write

For all predefined types except time, the write procedure is 
defined as:
procedure WRITE (L :inout LINE;  VALUE: in sometype, 

JUSTIFIED: in SIDE:=RIGHT; 
FIELD: in WIDTH := 0);

procedure WRITE (L :inout LINE;  VALUE: in sometype, 
JUSTIFIED: in SIDE:=RIGHT; 
FIELD: in WIDTH := 0;
UNIT: in TIME := ns);

For the time type, the write procedure is defined as:

BR 1/02 27

Aside: Functions vs Procedures

We will study procedure and function syntax in more detail later. 
For now, be aware that a procedure can modify a parameter if its
mode is either  inout or out, and that a procedure does not return 
a value. 
procedure 

READ(L:inout LINE; VALUE:out sometype; GOOD:out Boolean); 

Reads values from L and also modifies it by removing 
characters from L. Also modifies parameters VALUE, GOOD.

A function can never modify its parameters (mode of function 
parameters always in),  and will always return a value: 

function ENDFILE (file F: TEXT) return BOOLEAN;  

BR 1/02 28

stim_readfile.vhd
Can look at stim_readfile.vhd in the exam1 library for examples 
of reading input values from a file. 

CAUTION!    stim_readfile.vhd is somewhat complicated 
because it supports an input format that requires some character-
by-character processing.  It reads input from src/stimfile.stm .

# stimulus file for D-latch gate
#          D  G  R 
## FF reset
0 ns  ==>  0  0  0 
## negate reset
10 ns ==>  0  0  1
## D had no effect, clock low
20 ns ==>  1  0  1

If line starts with ‘#’, then 
it is a comment line.

Time at which vector is to be applied, values for vector.

Must read this as 
complete string or 
character-by-character.

BR 1/02 29

Simplifying stim_readfile.vhd

Could simplify readfile architecture if each line of the input file 
used the following format (assume values are either ‘1’ or ‘0’):

time_val d_val   g_val   r_val

Can read the value into a bit type, then convert the bit type into a 
std_logic type when applying the value.

Code for doing this is shown on the next page.

There is no error checking in this code. Possible errors would be:  
file does not exist, time_val is less than previous time_val (can’t 
go backward in time!), incorrect formatting of input values (not a 
bit type), empty lines).

BR 1/02 30

file stimulusfile: text;
process
variable time_val: time;
variable inbit: bit;
variable ll: line;
begin 
file_open(stimulusfile, filename); 
while (not endfile(stimulusfile)) loop

deallocate(ll);
readline(stimulusfile, ll);
read(ll,time_val);
wait for (time_val – NOW);
read(ll,inbit);
d <= To_stdulogic(inbit);
read(ll,inbit);
g <= To_stdulogic(inbit);
read(ll,inbit);
q <= To_stdulogic(inbit);

end loop;
wait;

end process;

Suspends process 
until NOW equals 
the time value just 
read.

Apply d, g, r signals 
at this time.

to_stdulogic
converts a bit type to 
a std_logic type.



6

BR 1/02 31

Library utilities, Package std_utils
In the utilities directory are several packages that we will make 
use of over the semester.

The std_utils package contains some type conversion functions 
between pre-defined types. 

I will not cover these functions/procedures in detail, you might
want to peruse this package. 

As we look at examples that uses a particular package from the 
utitilies directory,  I will only cover a particular procedure or 
function from a package if it illustrates some functionality that 
has not been demonstrated elsewhere.  You should look at the 
contents of the packages as the semester progresses; you will find 
some of them useful.


